Observations and Radiative Transfer Model Calculations of Shortwave Irradiance Reduction during 2017 Solar Eclipse

- Guoyong Wen, GESTAR/Morgan State University
- Alexander Marshak, NASA/GSFC
- Si-Chee Tsay, NASA/GSFC
- Jay Herman, UMBC/JCET
- Ukkyo Jeong, University of Maryland
- Nader Abuhassan, UMBC/JCET

Objectives

- It is fun and a natural experiment
- Quantify global energy disturbance under eclipse conditions (never done before)
- Test radiative transfer model with known TOA solar irradiance change

Example

March 9, 2016 over Indian Ocean and Pacific Ocean

Solar Eclipse of August 21, 2017 "The Great American Eclipse"

Estimate Reduction in Global Average SW Radiation Budget

- Well prepared. Coordinated EPIC observations every 30 min. Deployed radiometers to two ground sites.
- From space, compare EPIC images on eclipse date with those from nearest date.
- From ground-based observations
 - > pyranometer for surface irradiance
 - > Pandora Spectrometer System for trace gas, aerosol, cloud

Reduction of Reflectance from EPIC

 $\Delta R \approx 10\%$

Spectral irradiance and percentage reduction of reflectance (Herman et al, 2018)

How to Estimate Global Average Irradiance Reduction from Local Observations?

1. Temporal to Spatial for Estimating Average Irradiance (F_{eclipse})

- Assume N pyranometers uniformly placed along the totality path at $X_1, X_2, ..., X_n$.
- For Casper site, the pyranometer observed downward flux at times t₁, t₂, ..., t_n.
- The spatial average from n pyranometers at time t is equivalent to temporal average of observations from Casper site if the atmospheric condition and surface properties do not change with time and space.

$$F_{eclipse} = \frac{\sum_{i=1}^{N} F(X_i)}{N} = \frac{\sum_{i=1}^{N} F_{casper}(t_i)}{N}$$

How to Estimate Global Average Irradiance Reduction from Local Surface Observations?

2. How to estimate global average?

Global averages

Global average for Eclipse:

$$F_1 = (\pi R_e^2 - \pi r^2)F' + \pi r^2 F_{\text{eclipse}}$$

$$B + A$$

F'=avr outside penumbra F_{eclipse} =avr in penumbra

Global average for Non-Eclipse:

$$F_2 = (\pi R_e^2 - \pi r^2)F' + \pi r^2 F_{\text{non-eclipse}}$$

F_{non-eclipse} =avr would be without eclipse

Eclipse induced diff in global average:

$$\Delta F = \frac{\pi r^2 (F_{eclipse} - F_{non-eclipse})}{\pi R_e^2 F}$$

- Estimated from temporal average
- Need to be computed from RT models
- Global average (A and B) for non-eclipse estimated using Tr=0.55 (trans) α =0.3 for reflected, TSI = 1360.8 W/m2, r = 3430 km, R_e = 6370km

Radiative Transfer Model and Inputs

Radiative Transfer Model

✓ Fu&Liou Broadband Radiation Code

Model Inputs

- ✓ Aerosol optical depth
- ✓ Precipitable water
- ✓ Total column O₃
- ✓ Altitude
- ✓ MODIS/IGBP Surface albedo
- ✓ TOA Spectral Solar Irradiance
- ✓ Cloud optical depth
- Cloud fraction (inferred)

Cloud fraction is needed for

- Downward irradiance for non-eclipse
- TOA upward irradiances for both eclipse and non-eclipse

Observations vs RT Model Computations

Casper, WY

Clear sky conditions

- Model captures the main feature of irradiance variations
- Thin cirrus cloud not blocking the Sun makes a difference

Clear Sky: $\Delta F = F_{eclipse} - F_{non-eclipse} = -368.5 W/m^2$

- about -14.6% reduction in global transmitted SW irradiance
- ➤ Additional thin cirrus → -15.2%

EPIC observed cloud top height

Observations vs RT Model Computations

Columbia, MO

Clear sky conditions

- Model captures the main feature of irradiance variations
- Cloud plays important role

Clear Sky: $\Delta F = -385.0 \text{W/m}^2$ (5% larger than Casper) about -15.3% reduction in global transmitted SW irradiance compared to $\Delta F = -368.0 \text{W/m}^2$ or -14.6% for Casper due to SZA and precipitable water.

Need to Infer Radiative Effective Cloud Properties

We need to derive radiative effective cloud fraction

Cloud optical depth

EPIC Cloud Top Height

Casper

Columbia

X Pixels

16:14:50 UTC

Estimate of Global Average SW Irradiance Change

Local:

- Downward SW $\Delta F = -364 \text{ W/m}^2$, -48%
- Upward SW $\Delta F = -84 \text{ W/m}^2$, -44%

Global:

- Downward SW $\Delta F = -15\%$
- Upward SW $\Delta F = -6\%$

Downward SW Irradiances

TOA Upward SW Irradiances

Estimate of SW Irradiance Change

Columbia

Local:

- Downward SW $\Delta F = -283 \text{ W/m}^2$, -43%
- Upward SW $\Delta F = -81 \text{ W/m}^2$, -44%

Global:

- Downward SW $\Delta F = -11\%$
- Upward SW $\Delta F = -8\%$

Casper

Local:

- Downward SW $\Delta F = -364 \text{ W/m}^2$, -48%
- Upward SW $\Delta F = -84 \text{ W/m}^2$, -44%

Global:

- Downward SW $\Delta F = -15\%$
- Upward SW $\Delta F = -6\%$

TOA Upward SW Irradiances

Summary

- Ability of 1D radiative transfer model
- Surface SW flux: larger reduction for clear atmosphere than cloudy atmosphere.
 Local average: 48% (Casper) vs 43% (Columbia)
 Global average: 14% vs 11%.
- TOA SW flux: larger reduction for cloudy atmosphere than clear atmosphere.
 Global average: 6% (Casper) vs 8% (Columbia).
- Estimated for Columbia site is close to EPIC observations of 10%.